Open Problem Session at GROW 2019

Vienna, 23rd September 2019

Problem 1 - Jan Kratochvíl

What is the complexity (P or NP) of the following problem?
Given a graph $G=(V, E)$, decide if there exist a partition $V=A \dot{\cup}(V \backslash A)$ where the following is forbidden: There is some $X \subseteq V$ with $|X|=4$ such that $G[A \cap X]$ and $G[(V \backslash A) \cap X]$ are (possibly empty) cliques and $G[X]$ has exactly these two cliques as connected components.

Problem 2 - Thekla Hamm
What is the complexity (P or NP) of the following problem?
Given a chordal undirected graph, count the number of so called moral acyclic orientations (MAOs for short). An acyclic orientation is moral if the edges of an induced P_{3} (a path with three vertices) are not both directed towards the middle vertex of this P_{3}.
Known results:

- $\mathcal{O}\left(2^{n}\right)$-algorithm for n-vertex graphs [TK19].
- Polytime algorithm for graphs of bounded treewidth [TK19].
- Polytime algorithm for graphs of bounded vertex degree [GSKZ19].
- Polytime algorithm for graphs that have a clique tree that has a polynomial (in the number of vertices of the graph) number of subtrees.
[GSKZ19] AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, and Kun Zhang. Counting and sampling from markov equivalent dags using clique trees. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 February 1, 2019., pages 3664-3671, 2019.
[TK19] Topi Talvitie and Mikko Koivisto. Counting and sampling markov equivalent directed acyclic graphs. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019., pages 7984-7991, 2019.

Problem 3 - Mamadou Kanté
Consider the problem \#DOM of counting the number of minimal dominating sets of a graph. Even in split graphs this problem is known to be \#P-complete (essentially listing all minimal dominating sets is the best one can do).

A k-sun is the graph that arises from a clique on vertices v_{1}, \ldots, v_{k} by adding k vertices $w_{1}, \ldots w_{k}$ and edges between w_{i} and v_{i} and w_{i} and $v_{i+1}\left(v_{1}\right.$ in the case of $\left.i=k\right)$.

A graph is recursively chordal if it is k-sun-free for $k \geq 4$. In particular stongly chordal graphs, which are k-sun-free for $k \geq 3$, are recursively chordal.

For a hereditary graph class \mathcal{C} of chordal graphs, prove (or disprove): \#DOM for \mathcal{C} is in P if and only if $\mathcal{C} \subseteq$ class of recursively chrodal graphs. (A first step is already known: \#DOM for strongly chordal graphs is in P .)

Problem Set 4 - Steven Chaplick

A bundled crossing in a drawing of a graph is a group of crossings between two sets of locally pairwise non-crossing edges. (For a formal definition see e.g. [CvDK $\left.{ }^{+} 18\right]$.) The bundled crossing number of a drawing is the minimum number of bundled crossings that group all crossings in a drawing of the graph.

The bundled crossing number bc of a graph is the minimum bundle crossing number of a simple drawing of this graph. The circular bundled crossing number of a graph bc° is the minimum bundle crossing number of a simple drawing this graph in which the vertices of the graph are required to lie on the boundary of a disk and all edges of the graph are required to lie inside this disk. Deciding $\mathrm{bc}^{\circ} \leq k$ is in $\mathrm{FPT}\left[\mathrm{CvDK}^{+} 18\right]$.
4.1 Is there a faster FPT-algorithm for deciding $\mathrm{bc}^{\circ} \leq k$ (in particular one that avoids the use of Courcelle's theorem)?
4.2 Is deciding $\mathrm{bc}^{\circ} \leq k$ even NP-hard?
4.3 Is deciding $\mathrm{bc} \leq k$ in FPT for general simple layouts?
$\left[C_{v D K}{ }^{+} 18\right]$ Steven Chaplick, Thomas C. van Dijk, Myroslav Kryven, Ji-won Park, Alexander Ravsky, and Alexander Wolff. Bundled crossings revisited. CoRR, abs/1812.04263, 2018.

Problem Set 5 - George Mertzios

A temporal graph with lifetime $T \in \mathbb{N}$ is a tuple (G, λ) of a graph $G=(V, E)$ and a function $\lambda: E \rightarrow$ $2^{\{1, \ldots, T\}}$. For some $\Delta \leq T$, sliding Δ-time windows are defined as the intervals $W_{t}=[t, t+\Delta-1]$ for $t \in[1, T-\Delta+1]$.

A solution to Δ-TVC (sliding Δ-time window temporal vertex cover)[AMSZ19] is a minimum set $X \subseteq V \times[1, T]$ such that for every sliding Δ-time window W_{t} and every edge $e \in \bigcup_{t^{\prime} \in W_{t}} \lambda^{-1}\left(t^{\prime}\right)$ there is some $\left(v, t^{\prime}\right) \in X$ such that $t^{\prime} \in W_{t}, t^{\prime} \in \lambda(e)$ and v is an endpoint of e.
5.1.1 What is the complexity of solving Δ-TVC on degree-at-most- 2 temporal graphs?
5.1.2 Can Δ-TVC on general graphs be approximated within a factor better than 2Δ ?
5.1.3 Can Δ-TVC on always-degree at most d temporal graphs be approximated within a factor better than d ?

A solution to Temporal Matching $\left[\mathrm{MMN}^{+} 19\right]$ is a maximum set $M \subseteq E \times[1, T]$ such that for every sliding Δ-time window W_{t} and every vertex $v \in V$ there is at most one $(e, t) \in M$ such that $t \in W_{t}, t \in \lambda(e)$ and v is an endpoint of e.
Temporal Matching is APX-hard, even for $T=3$ and $\Delta=2$.
For $T=3$ and $\Delta=2$, an easy (2/3)-approximation is given by taking the maximal of the maximum matchings in $\left(V, \lambda^{-1}(i) \cup \lambda^{-1}(j)\right)$ for $i, j \in\{1,2,3\}$. This generalises to a $\frac{\Delta}{2 \Delta-1}$-approximation for general T and Δ.
5.2 Is there a polytime approximation algorithm for Temporal Matching with approximation ratio at least $\frac{1}{2}+\varepsilon$?
[AMSZ19] Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex cover with a sliding time window. Journal of Computer and System Sciences, 2019.
$\left[M_{N}{ }^{+} 19\right]$ George B. Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche. Computing maximum matchings in temporal graphs. CoRR, abs/1905.05304, 2019.

Problem Set 6 - Jakub Gajarský
Given a graph G and a FO-formula $\psi(x, y)$, define $I_{\psi}(G)$ as the $\operatorname{graph}(V(G),\{\{u, v\} \mid G \models \psi(u, v)\})$.
Let \mathcal{C} be some sparse graph class.
6.1 Given some FO-formula $\psi(x, y)$, characterise $I_{\psi}(\mathcal{C})=\bigcup_{G \in \mathcal{C}} I_{\psi}(G)$.
6.2 Given $H \in I_{\psi}(\mathcal{C})$, compute $G \in \mathcal{C}$ such that $H=I_{\psi}(G)$.
6.3 (Weaker variation of 6.2) Show that for every FO-formula $\psi(x, y)$ there exists a class \mathcal{C}^{\prime} of sparse graphs, a FO-formula $\psi^{\prime}(x, y)$ such that $\left|\psi^{\prime}\right| \leq|f(|\psi|)|$ and a polytime algorithm A such that, given $H \in I_{\psi}(\mathcal{C}), A$ computes $G \in \mathcal{C}^{\prime}$ such that $H=I_{\psi^{\prime}}(G)$. Ideally, A should run in FPT-time parameterised by $|\psi|$, but XP is also fine.

Some known results:

- For \mathcal{C} as the class of bounded degree graphs, both 6.1 and 6.2 are resolved [2].
- 6.3 is answered for map graphs by transforming them into nowhere dense graphs [1].
- For graphs of bounded expansion 6.1 is resolved [3].
[1] Kord Eickmeyer and Ken-ichi Kawarabayashi. Fo model checking on map graphs. In Ralf Klasing and Marc Zeitoun, editors, Fundamentals of Computation Theory, pages 204-216, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.
[2] J. Gajarský, P. Hliněný, J. Obdržálek, D. Lokshtanov, and M. S. Ramanujan. A new perspective on fo model checking of dense graph classes. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, pages 176-184, New York, NY, USA, 2016. ACM.
[3] Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez, Michal Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. First-order interpretations of bounded expansion classes. In 45 th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 126:1-126:14, 2018.

Problem Set 7 - Robert Ganian
An ℓ-page book embedding of a graph consists of a linear ordering of its vertices which induces an embedding of the vertices along a line (also called spine) and an embedding of its edges into at most ℓ halfplanes that have the spine as their boundary, such that the embeddings into each halfplane are planar.

Is finding an ℓ - page book embedding of a graph FPT parameterised by...
$7.1 \ldots$ the treewidth of G ?
$7.2 \ldots$ the treedepth of G ?
$7.3 \ldots$ the minimum size of a feedback edge set of G ?
All these questions are interesting even if the ordering of the vertices is fixed.
Known: Finding an ℓ-page book embedding is in FPT parameterised by the minimum size of a vertex cover of G [1].
[1] Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized algorithms for book embedding problems. CoRR, abs/1908.08911, 2019.

Problem Set 8 - Christophe Paul (originally posed by Maurice Pouzet)
Given a tournament T an inversion in T is the operation of selecting a vertex set $S \subseteq V(T)$ and reversing every arc in $T[S]$. The minimum number of inversions needed to transform T into a transitive tournament is called inversion index of T and denoted by $\operatorname{Inv}(T)$.
8.1 Is deciding $\operatorname{Inv}(T) \leq k$ NP-complete?
8.2 Is deciding $\operatorname{Inv}(T) \leq k$ in FPT? (Membership in XP is known by a WQO argument.)
8.3 Is it true that if T can be decomposed into T_{1} and T_{2} such that all arcs between T_{1} and T_{2} are directed from T_{1} to T_{2}, then $\operatorname{Inv}(T)=\operatorname{Inv}\left(T_{1}\right)+\operatorname{Inv}\left(T_{2}\right)$?
8.4 What can one say about the problem, if one restricts the cardinality of vertex sets one can choose for inversion?

